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This poster compares two procedures, ‘lake’ control’ and ‘e-target control’, for the
operation of gated reservoirs protecting a downstream city from flooding during a single
isosceles flood event (peak P [m3/s] , duration T [s], volume V=P*T/2 [m3]). ‘Lake’ control is
local in time, always releasing a fraction of the flood-pool contents per unit time - in the
simplest case, a constant fraction, the so-called ‘linear’ reservoir. In marked contrast, ‘e-
target’ control always releases an outflow as close to e [m3/s] as possible. When the inflow
is less than e, and the flood pool is empty, the release is the inflow itself, as if the reservoir
did not exist. When the inflow rate exceeds e, the excess is stored in the flood-pool,
accumulating to a maximum stored volume S [m3]. The flood-pool is returned to empty at a
release rate e. The technical efficiency of an operating procedure in attenuating a reference
flood can be measured in two equivalent ways: (1) as the smallest upper bound on the flow
through the city, e, that a flood-pool volume S provides, or (2) the minimum flood-pool
volume, S, that defends the city against a maximum flood flow, e.
We prove the following efficiency relationships

‘Lake’ control: S/V ≈ 1 – e/P, e/P ≈ 1 – S/V least efficient
‘e-target’ control: S/V = (1 – e/P)2, e/P = 1 – √(S/V) most efficient

‘e-target’ control is almost twice as efficient as ‘lake’ control. We extend these results to a
cascade of two reservoirs in series, with synchronous lateral inflow above and below each
dam in proportion to upstream catchment area. There is almost no loss of efficiency under
‘e-target’ conjunctive control. The City of Cork provides an illustration: there would have
been no inundation of its Central Island in Nov 2009 had ‘e-target’ control been in
operation at its two dams; and ‘14km x 1.4m defensive walls’ are not required to defend it.

Reservoir operating procedures 
during a flood event

‘Lake’ control

• Releases proportional to 
volume in storage

• “Don’t worsen nature”
Nollumus mutari

‘e-target’ control

• Release all inflows less than e [m3/s], 
as if the dams 
were not there

• Follow the Supreme Court ruling to   
protect the city 
“in certain circumstances”: 

when the inflow exceeds e, 
store the e-excess in the flood-pool, 
throttle releases for tributaries

below the dams,  
balance the dams with the 

‘empty-space rule’, and  
empty the flood-pool at a rate e.
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‘Lake’ control:  outflow and storage 

Release O(t) = k*S(t)
Outflow and Storage reach maxima, 
when I(t”) = O(t”) at time t”(k’).
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Outflow O(t; k’)

t

m3/s

hours

Reference flood I(t)
P=1,000m3/s, T=40h, V=72,000,000m3

‘e-target’ control
Pass the inflow I(t) < e, 
store the e-excess I(t) – e > 0
empty the flood-pool at a rate e
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≤  e

e/P  ≤   2 - √2 
= 0.5858

Release O(t; e)

m3/s

hours

‘e-target’ control of the reference flood
is almost twice as efficient as ‘lake’ control

O'Kane       2 November 2021 Efficient control of floods                    Figure  5

m3/s

hours

m3

hours

hourshours

t”’ ≤  T

e/P  ≥   2 - √2 
= 0.5858

e/P
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Efficiency of ‘e-target’ and ‘lake’ control 
of an isosceles flood: peak P, duration T, volume V=P*T/2

‘e-target’ control

S”/V =  ( 1 – e/P)2

e/P =  1  – √(S”/V)

‘lake’ control

1.Transcendental parametric solution
[Dooge, 1956]

2. Approximate solution :
linearly increasing release rate
[Wycoff & Singh, 1976] : 

S”/V  ≈  1 – e/P
e/P   ≈  1  – S”/V

3. Wycoff & Singh regression study.

S”/V

Cork conclusions 1-3: 
changing to ‘e-target’ control =>
no need for 14km x 1.4m walls in Cork
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Mathematical appendix
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The following theorems confirm and clarify the results obtained from CC-SS-Lee 
(Conjunctive Control and Simulation System for the Lee), reported in the paper 
“Protecting the City of Cork from Flooding” presented via Zoom at the IHP/ICID 
National Hydrology Conference in November 2020: https://hydrologyireland.ie/wp-
content/uploads/2020/12/08-OKane-Protecting-the-City-of-Cork-from-
Flooding_merged_final.pdf, and also on the website www.savecorkcity.org

t”’ ≥  T

’e-target’ control of isosceles flood
Pass the inflow I(t) < e, 
store the e-excess I(t) – e > 0
empty the flood-pool at a rate e
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≤  e

t”’  ≤   T
e/P  ≥   2 - √2 

= 0.5858

O(t) – six cases

Inflow = outflow
V =  e*t”’ - V∆
t”’ =  (V + V∆ )/e

= (P*T/2 + (e/2)*(T/2)*(e/P))/e

t”’/T = (P/e)/2  + (e/P)/4 

t”’ = T when 
P/e = 1 + √2/2 = 1.7071, 
e/P = 2 - √2 = 0.5858

’e-target’ control of isosceles flood 
Case: duration t”’≥ T,  peak P, base T, volume V=P*T/2
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(T/2)*(e/P) 

V/e + e/(2*m) 

S(t) =    [S0(t), S1(t), S2(t), S3(t), S4(t)],    S0(0) = 0,   

S0(t) =    0 0 ≤ t ≤ t’
S1(t) =   m*t2/2 - e*t + e2/(2*m) t’≤ t ≤ T/2
S2(t) = - m*t2/2 + (m*T- e)*t  - V + e2 /(2*m) T/2 ≤ t ≤ T  
S3(t) = - e*t + V  + e2 /(2*m) T ≤ t ≤ t”’
S4(t) =    0, t”’< t 
where   t’= e/m=(T/2)*(e/P)),   t”’ = V/e + e/(2*m) = (T/2)*[ (P/e) + (e/P)/2 ]

The time-to-peak storage S”= Smax= max S2(t) occurs when m*(T-t”) = e :
t”/T = 1 - (e/P)/2

The ratio of flood storage and volume  S”/V, and the attenuation ratio e/P, satisfy
S”/V = (1 – e/P)2,   e/P = 1 - √(S”/V)

Five-part quadrature of an isosceles flood I(t) in a 
reservoir under ‘e-target’ control, t”’≥ T

peak P, duration T, volume V=P*T/2, slope m=2*P/T, target e
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Vin(t”)   =   ∫I(t).dt   =  V     – V∆ 
Vout(t”) =  ∫O(t).dt   =  e*T – 3* V∆ 

S” = Smax =   Vin(t”)  – Vout(t”) 
=   V  – e*T  +  2* V∆ 
=   V*(1 – 2*(e/P) + (e/P)2)

S”/V =  ( 1 – e/P)2

e/P =  1  – √(S”/V)

‘

‘e-target’ efficiency theorem  
relationship between attenuation (e/P) and storage (S”/V)

reference flood: peak P, base T, volume V=P*T/2

O'Kane       2 November 2021 Efficient control of floods                    Figure  12

P

e

O Tt”

∆ ∆

∆

t”’  

V∆  = (e/2)*t’
= (V/2)*(e/P)2

t’= (T/2)*(e/P) 

∆

Smax

Storage
functions S(t) are 
identical for all f ,

0  ≤  f  ≤  e/P. 

hours

hours

m3

hours

m3/s m3/s
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Throttle the release O(t) to 
‘store’ the downstream tribs

(1 – f)*I(t) I(t) f*I(t)

S(t)
O(t)

e/P= 0.35f = 0.35

hours

hours

m3

hours

m3/s m3/s
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f  ≤  e/P = 0.351 - f = 0.5 I(t)

Throttle the release 
Case: f=0.5, e/P=0.35

‘e-target’ throttle theorem
The storage function S(t) in the ODE  dS/dt = I’(t) – O(t)  is 
independent of f, the fraction of the flood below the dam,

when O(t)≥0 => f ≤ e/P.
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(1 – f)*I(t) I(t) f*I(t)

S(t)

I’(t) = (1 – f)*I(t)
I’(t) - O(t) : six cases

f cancels !

O(t)I’(t)
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Throttle the releases and 
balance the stores 

No loss of efficiency when O2(t)≥0, O1(t)≥0

The solution S(t) of the ‘lake’ linear differential equation
dS(t)/dt = I(t) – O(t),  O(t)=k*S(t),  S(0)=S0=0

for a continuous isosceles inflow function I(t) = [m*t, m*(T-t), 0] is S(t) =[ S1(t), S2(t), 
S3(t)] = [O1(t), O2(t), O3(t)]/k where the disjoint outflow functions [O1(t),O2(t),O3(t)] are

O1(t)  =   m*t          +  (m/k)*[exp(-k*t) - 1], 0 ≤ t ≤ T/2
O2(t) =   m*(T- t)   +  (m/k)*[1 + ( 1-2*exp(k*T/2) )*exp(-k*t)], T/2 ≤ t ≤ T
O3(t)  =   0 +  (m/k)*[1 + exp(k*T) - 2*exp(k*T/2)]*[exp(-k*t)],            T ≤ t

Max O(t)/k = Max S(t) = S(t”) = S” occurs at time T/2 ≤ t”≤ T when I(t”)=O(t”), dS(t”)/dt=0 :  

t”/T = (1/(k*T))*Ln[(2*exp(k*T/2) - 1)]

The parametric relationship between flood attenuation e/P and storage S”/V is 
approximately linear: S”/V ≈  1 – e/P

e/P  =   2*(1 - t”/T) ,   S”/V  =  [4/(k*T)]*(1 - t”/T)

Isosceles flood I(t) routed through a linear reservoir
peak P, duration T, volume V=P*T/2, slope m=2*P/T, parameter k
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Vin(t”)    =   ∫I(t).dt  =  V   – V∆ 
Vout(t”)  =  ∫O(t).dt =   VTr – V∆ 

S” = Smax = Vin(t”)  – Vout(t”) 
= V  – VTr
=  V*(1 – e/P)

S”/V =  ( 1 – e/P)

‘Lake’ control approximation theorem
linear release rate O(t) from 0 to e at t=t”=T-t’
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Triangle Tr on base T, height e:
VTr = e*T/2 = V*(e/P)

∆
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Smax
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